A TAG1-APP SIGNALING PATHWAY THROUGH FE65 NEGATIVELY MODULATES NEUROGENESIS

Z.C. Xiao Q. Ma Institute of Molecular and Cell Biology, Singapore

The release of amyloid precursor protein (APP) intracellular domain (AICD) may be triggered by extracellular cues through ā-secretase-dependent cleavage. AICD binds to Fe65, which may play a role in AICD-dependent signaling. However, the functional ligand was not characterized. We have identified TAG1 as a functional ligand of APP. Through extracellular interaction with APP, TAG1 both increases AICD release and triggers Fe65-dependent activity in a ā-secretase-dependent manner. TAG1, APP and Fe65 co-localize in the neural stem cell niche of the fetal ventricular zone. Neural precursor cells from TAG1-/-, APP-/- and TAG1-/-&APP-/- mice show aberrantly enhanced neurogenesis, significantly reversed in TAG1-/- mice by TAG1 or AICD but not AICD mutated at the Fe65 binding site. Notably, TAG1 reduces normal neurogenesis in Fe65+/+ mice. Abnormally enhanced neurogenesis also occurs in Fe65-/- mice but cannot be reversed by TAG1. These results describe a TAG1-APP signaling pathway that negatively modulates neurogenesis through Fe65.